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We describe a method for direct numerical simulations ol highly turbulent compressible 
flows which permits an enhancement of the Reynolds number. A modification of the drs- 
sipative terms of the hydrodynamical equations is introduced in a way that preserves, by con- 
struction, the thermodynamic laws or the dissipation functions. At constant cost, the simulated 
Reynolds numbers can be two orders of magnitude larger than with the standard Navier-- 
Stokes equation. We also compare our method with the artitical viscosity scheme customary to 
spectra) methods, namely using high powers of the Laplacian, and show that results are 
improved. in our case, leaving out spurious oscillations near the shock, in particular. I“ 1938 

Academic Prcra. Inc. 

1. INTRODUCTION 

Numerical simulations of flows, in the spirit of experimentation, are only in their 
infancy because of the severe lack of resolution of present-day supercomputers. 
Among the many available numerical schemes, spectral ones are known for their 
precision, as long as the flow remains smooth. Several compressible dissipative 
flows in the turbulent regime have been simulated with spectral methods, both in 
two dimensions [l-3] and in three dimensions [4], though at substantially lower 
Reynolds number in the latter case. No Gibbs phenomenon occurs in these 
simulations because shocks are smoothed out by adequate viscosity, spreading 
them on five to eight grid points. The spectral precision is thus preserved down to 
the dissipative scale: structures observed on derivative fields, such as vorticity sheets 
and, in magnetohydrodynamics, current sheets, are adequately resolved. This is par- 
ticularly important when dealing with instabilities of the diffusive type, for example, 
the resistivity-dependent tearing mode of current sheets. It should be noted that in 
MHD, one can simulate flows for magnetic Reynolds numbers that are not 
attainable in the laboratory (except, marginally, in industrial equipment such as the 
liquid sodium of metal-cooled breeder reactors) and yet are essential in the 
understanding of the generation of large scale magnetic fields that are observed in 
many cosmic objects. However, when dealing with various aerodynamical or 
astrophysical problems in which the fluctuating Mach number is above unity and 
the Reynolds number is very large [5], the numerical wind-tunnel approach proves 
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insufficient. In such cases, one resorts to a modeling of the flow, for which a large 
spectrum of possibilities exists. One seeks to obtain not only a correct treatment of 
the behavior of the large-scale energy-containing eddies, but also an adequate 
representation of the structures occurring in physical space down to some inter- 
mediate scale as close as possible to the dissipation wavelength. In this context, 
large grids are still needed to resolve the small scales. and it is in the handling of 
dissipation that large Reynolds numbers become available. In this approach, one 
does not attempt to simulate the Euler equations with an artificial viscosity to 
smooth out the shocks 16, 71. Rather, one tries to remain as close as possibie to 
NavierStokes flows, in order to preserve the adequate representation of non-local 
effects between widely separated scales, in particular. Indeed, the turbulent viscosity 
that represents the enhanced dissipation of energy due to the non-explicitly treated 
small scales is well known; however, in some cases. transport coefficients can be 
negative, leading to large-scale instabilities due to averaging effects over the small 
scale turbulence. 

In spectral codes using Fourier decomposition, the Laplacian is diagonal and a 
very simple hyperviscosity law is to use powers of the Laplacian higher than unit:~. 
This technique has been studied in the mathematical context to prove globat 
regularity of the thus-modified NavierStokes equations [S], Its implementation on 
two-dimensional flows is well documented [9, lo] and in three-dimensional MHD 
it proved useful in studying the inverse transfer of magnetic hehcity [9]. This 
method restricts the dissipation range to a small interval of wavenumbers, thus 
leaving more room for the inertial range in which nonlinear effects prevail. 
However, the associated dissipation function is not everywhere positive and, when 
applied to compressible flovvs, it leads to spurious oscillations in the shocks. This 
part is treated in Section 2. We present in Section 3 a systematic procedtire to con- 
struct new dissipation functionals that remain positive by generalizing the Naveer- 
Stokes constitutive laws to the nonlinear case. This method is tested numericaliy in 
Section 4 against high-resolution numerical experiments, and Section 5 is the 
Conclusion. 

2. THE CASE OF THE BI-LAPLACIAN 

We consider the compressible fluid equations for the density p, the momentum 
pu (where 11 is the velocity) and the energy E: 

c?<p +V(pu) = 0 

?,pz~+V~(Pl+pUU)=V~T i3.1) 

(1,E+V((E+P)u)=KV’T+V(+=u), 

where the usual formulation of the stress tensor (NavierrStokes law) is 

T = L(div u) I + 2~1D i7.2’) 
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with D,= +(u~,~ + u~,~) being the deformation tensor and A and p the Lamt coef- 
ficients; I is the identity tensor and partial derivative in the j direction is denoted by 
j, in (2.1) P is the pressure (determined through, for example, the perfect gas law) 
and K is the thermal diffusion coefficient. When we restrict the problem to the one- 
dimensional case, we can write V(T) = 11, Au, which in Fourier space is simply 

n 
V.T= -p,k*zZ(k), 

where i(k) is the Fourier transform of the veiocity field U(X) and where k is the 
wavenumber. The dissipation ~,(?~u)~ is proportional in Fourier space to k’ and is 
more important in the small scales. When simulating turbulent flows with a finite 
number of Fourier modes, the coefficient p, is so chosen as to ensure that the 
energy spectrum in the small scales drops off sufficiently fast without letting energy 
accumulate there. This poses a severe constraint on the Reynolds numbers than can 
be simulated without truncation error using the Navier-Stokes equation. This well- 
known problem can be circumvented by modifying the primitive equations in such 
a way as to concentrate dissipation to a smaller range of wavenumbers. In a spec- 
tral code using Fourier expansions for which the Laplacian operator is diagonal, a 
particularly simple choice of an hyperviscosity is to take a dissipation proportional 
to k2” (a > 1). With CI = 2, the form commonly used is thus 

v . T = -p’, k4d(k); (2.3) 

to adjust the new viscosity coefficient ,u’,, one writes 

(2.4) 

where k,,, is the cut-off wavenumber and C a constant of order one to be adjusted 
empirically. We see that the relationship (2.4) implies that the enhancement of the 
Reynolds number in the large scales (corresponding to kmin = 1) is of the order of 
kz&-‘;;‘j and is thus very effective. We should here mention that the relationship 
between local Reynolds number and scale varies with cc; the condition (2.4) 
indicates that the local Reynolds number at the dissipation scale (close to k,$,) is of 
order unity whatever the choice of CI. 

In real space, (2.3) implies that T= -~~&zl. We can thus express the dis- 
sipation d= T : D as 

d= -p;(S;,,u) .d,u. 

This expression is not everywhere positive, whereas the integrated dissipation 
J ddx= j (Z~,,U)* dx clearly is. We show the sketch of a triangular shock in Fig. la, 
of the dissipation d in Fig. 1 b and of the result of a numerical simulation in the one- 
dimensional case in Fig. lc using a spectral method 1121 and the expression (2.3). 
We see that at the edges of the shock, energy is fed into the system instead of being 
removed, because of the oscillations of the dissipation d around zero. This explains 
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FIG. 1. Sketch of a triangular shock (a) and of the corresponding dissipation d= -p(az,,u) ?,u lb); 
in (c). we plot the profile of a velocity jump computed numerically with the bi-Laplacian method. Note 
the oscillations when the dissipation d is negative. 

the pre- and post-shock oscillations of the numerical simulation; they are not 
related to the Gibbs phenomenon, which would appear on top of it for values of E;: 
smaller than that used in the computation reported here. 

Although one could remove such oscillations with a proper filtering of the 
velocity field, another possibility is to find a pseudo-viscosity tensor which compels 
the dissipation to be everywhere positive. This is done in the next Section. 

3. THE DERIVATION OF A HIGH-ORDER POSITIVE DISSIPATION FUNCTION 

We want to find a natural way to generalize the Navier-Stokes law in order to 
have a dissipation proportional to kJ (in Fourier space) in regions of sharp 
gradients, together with the positivity of the local dissipation in real space. This 
latter property, which holds for Navier-Stokes flows, is important when seeking to 
avoid spurious oscillations near the shock, as we have shown in Section 2. Instead 
of proceeding in an empirical way to derive a model of the small scales that are not 
treated explicitly in the computation, we propose to start from first principles 
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and retain this structural property of the NavierStokes equations which appears 
particularly important in the highly compressible case. 

The Navier--Stokes laws may be derived from a pseudo-potential of dissipation 
q2(D), where D is the deformation tensor. In this formulation, the stress tensor T is 
the gradient of the quadratic functional cp2(D). Note that q2 is, within an additive 
constant, the free energy which must be minimum at local thermodynamic 
equilibrium [13, 141. This in turn implies that cp2 is positive definite and convex. 
The dissipation is then 

where the Einstein summation convention is employed and 6 denotes functional 
derivative. The last part of the equality stems from the fact that ‘pz is a 
homogeneous polynomial of D, (Euler’s theorem J. 

This constitutive law, relating T with D, can be viewed as the linear first-order 
approximation of a more general expansion. We will thus consider a potential of 
dissipation which is a quartic homogeneous functional of D. The general form of 
this potential p,(D), assuming isotropy, can be easily expressed from the three 
invariants of D, namely: 

I, = D,, (3.1 j 

I2 =D,D,, (3.2) 

I, = D,;D,,D,,. (3.3) 

All other invariants of higher order are a combination of these three. We recall here 
the more general form of the quadratic functional q,(D), 

which gives for T the usual expression, 

with the positivity of cp2( D) obtaining when n > 0 and i > $. In the quartic case 
one writes 

which gives for T = Vrp,( D): 

r,i=[4r,Z:+2azZIZ-+a,Z,]6ii 

+[2a,Zf+4a,Z,]Di,+3a,Z,D,Dk, (3.4) 
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The coefficienrs cl; appearing in the above expression are not entirely arbitrary; 
indeed, there are constraints on them so that the dissipation T : D = 4q1( 
positive for all values of Dij. We exhibit such constraints for two cases, FOF 
example, for incompressible flows, I, = 0 and ql( D) = rj I’. Since I2 > 0, we musl 
have CL~ > 0. On the other hand, for tensors of the form D E I. we have 

17=f1;, 

r;=gz:, 

and we find that x,+~ix,+~cc,+$s~~>O. 
Note that this case of spherical tensors corresponds to uniform compression. The 

expression for T;, given above is rather complicated. Having in mind numerical 
applications, we shall therefore set CC~=O, which eliminates the term in (3.4) most 
cumbersome to compute. Furthermore, in the two-dimensional problem, the 
following relation holds: 

and the above simplification becomes rigorous. 
Seeking to reduce further the number of coefficients a,, we can use particular 

forms of the stress tensor sii depending only on one parameter p. For example, by 
letting m1 = &!i. CI~ = -fp. clj =tp, and cz,=O in (3.4), one obtains: 

T.ii=~[I,-fzf][-31,8j,+ZDjj]. (3.5) 

This can be interpreted as the usual formula for TV, (when bulk viscosity is neglec- 
ted) in which the viscosity coefficient is dependent-upon the fluid deformations. 

Another one parameter-dependent form for TV is obtained by simply setting 
x2 = 0 and ‘x, = X~ = $. In that case, 

In the following, we will only consider the formulation (3.51, which is closer to 
the usual Navier-Stokes law. 

We would like to point out that the internal stress tensor derives from a poten- 
tial: this fact restricts the possible expressions for T. Recall indeed that the Lamt 
coefficients i. and p usually depend only on temperature. An a priori natllrai 
generalization may be to make them also velocity dependent. However, an arbitrary 
expression in terms of the invariants (3.1t(3.3) does not ensure that T will derive 
from a potential and thus will not satisfy general thermodynamical constraints 
[13, 141. When, for numerical purposes one looks for simplified expressions of the 
stress tensor. one ought to start from (3.4). 

It is in principle possible to generalize this approach to higher order potentials, 
but we make no attempt at that in this paper and now turn to numerical 
experimentation using for the stress tensor the expression (3.5). 
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T NELIN- 1 TlHE= B.GGOE-GI 

FIG. 2. Shock tube simulation for 7 = 1.4 on a 2.56 points grid using z = p(d,~)~ d,u with LI = IO-” 
and a Prandtl number of 0.05: (a) density and velocity profiles; (b) temperature. 
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4. NUMERICAL EXPERIMENTS 

The formulae for the stress tensor derived in the previous section poses no par- 
ticular numerical problem. Here we wish to test the validity of the method and, in 
particular, to compare it against actual flow computations using the primitive 
Navier-Stokes equations. 

4.1. The One-Dimensional Shock Tube Problem 

We begin with a classical problem, that of the shock tube. Initially, the density 
jump is 10, the temperature is constant, and the velocity is zero. The computation is 
made with a pseudo-spectral code described in [3], on a uniform grid of 254 
points. A brief description of the numerical method is given in the Appendix. We 
use r’ij = p(a,u)* .d,tl with p = lo-“. The Rankine-Hugoniot relations are verified 
to within 0.5%. In fact, the results are indistinguishable from those reported in [3] 
in the case of the Navier-Stokes equations (see Fig. 2). The velocity jump is 
correctly computed. On the other hand, we were led to use a nonzero thermal 
diffusivity in order to treat correctly the temperature jump at the contact discon- 
tinuity. This discontinuity thus extends on two more points than the shocks do. 

The hyperviscosity method described in this paper pertains to the class of explicit 
artificial viscosity [6] in which shocks are spread on at least four points, With 
methods of implicit viscosity, in which one integrates the Euler equations and 
imposes jump conditions, shocks can be restricted to extend on 2 or 3 points by 
construction. In our case, shocks still have to extend on enough points that Gibbs 
phenomenon does not occur, but we have not altered the physical state outside the 
shock, nor the speed of the shock. 

4.2. Tlrlo-Dimensional Homogerleous Flows 

We now show that the hyperviscosity method described in Section 3 permits us 
to reproduce results obtained with the Navier-Stokes equations at a substantialIy 
lower cost. As we shall see below, not only large-scale (integrated) quantities are 
recovered, but also intermediate temporal and spatial scales. 

The Navier-Stokes run was described in [3] and was done on a 256 x 256 grid. 
We have performed a computation on a 64 x 64 grid using for the dissipation the 
expression (3.5); we adjust the value of the coefficient p so that, for short times, the 
temporal evolution of the large scales, measured, for example, through the temporal 
evolution of the kinetic energy, is identical to that of the Navier-Stokes run. In 
Fig. 3, we show the result of such a comparison on the evolution of the fluctuating 
Mach number Ma and on the ratio X of the compressible energy to the kinetic 
energy. The solid line represents the Navier-Stokes run (in which the viscosity is 
equal to lo--*) and the dotted line, when visible, corresponds to the hyperviscosity 
run, with p = 2.5 x 10-3. The remarkable feature of Fig. 3 is that these overall quan- 
tities are reproduced in a detailed manner, with plateaux in the Mach number of 
the same length and amplitude in both cases. A further comparison has been perfor- 
med for the same parameters using the bi-Laplacian method. All three runs lead to 
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FIG. 3. Temporal evolution of the fluctuating Mach number Ma and of the ratio of compressible to 
kinetic energy 9‘ for both the 256 x 256 points Navier-Stokes run (solid line) and the 64 x 64 points 
hyperviscosity run (dashed line). 

the same behavior, to within a few percent, in the large scales. However, as noted 
before, more oscillations are obtained in the velocity, entropy, and density variables 
when using the bi-Laplacian, because of the development of strong shocks. Highly 
compressible flows thus seem more sensitive than incompressible ones to proper 
treatment of dissipation. 

When investigating the detailed spatial structures of the flow, one requires more 
resolution to be able to see details down to a given scale (as measured in units of 
the computational box, here L = 271). Indeed, we show in Fig. 4a the density field in 
the Navier-Stokes run. The field obtained with the 64 x 64 hyperviscosity com- 
putation has the same overall appearance (not shown). In particular, the strong 
collision of shocks in the upper left-hand corner is at the same position, and shocks 
are in both cases roughly live points wide; taking the length of the box to be con- 
stant, in the smaller resolution run, shocks thus appear wider (roughly by a factor 
256/64 = 4). However, if we now look at small scales, for example, displaying the 
vorticity, the features visible on Fig. 5a for the Navier-Stokes run are not easily 
identifiable in the 64 x 64 run. We therefore upgraded the resolution to 128 x 128, 
using a value of ,LL = 10e3. We show in Figs. 4b and 5b the density and the vorticity 
of this run at the same time. The overall aspect of the density field is the same, with 
individual values of local high and low differing by less than 6 % (contour intervals 
are equal in both cases to 0.8). In the case of the vorticity, the Navier-Stokes run is 
dominated by the vortex-pair production at the place where two strong shocks 
collide (upper left-hand corner) with a local intensity of f 12. These vortices also 
appear in the hyperviscosity run, but at a much lower intensity and, in fact, they do 
not dominate the flow. Note that the contour interval in Fig. 5a is 1.0 and in 
Fig. 5b, it is 0.3. However, the large-scale vortices, elongated approximately in the 
vertical direction, are reproduced fairly well in both runs, with local peaks and 
troughs of similar height. The reason why the local vorticity production of the 



HYPERVISCOSITY FOR COMPRESSIBLE FLOWS 309 

FIG. 4. Density field for the 256 x 36 points Navier-Stckes run :a) and the 128 x 128 points hyper- 
viscosity run (b). 
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FIG. 5. Vorticity field for the two runs of Fig. 4 
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Navier-Stokes run is not well reproduced here is simply due to the fact that the 
scale at which these vortex pairs appear is dependent upon the local geometry and 
thermodynamics of the shock collision [3]. In the Navier-Stokes run, they appear 
at a scale that is far enough from the dissipative range to be able to survive. In the 
hyperviscosity run, on the other hand, the vortex pair is formed at a scale which is 
roughly twice that of the width of the shock, and thus cannot grow because the 
rapid dissipation is overwhelming. 

We would like to make two final remarks. First of all, the functional form of the 
dissipation tensor we use is nonlinear. Other forms of eddy viscosities have been 
proposed for incompressible flows that are nonlinear. For example, the one given 
by Smagorinsky [15], which is widely used in the context of meteorology, stems 
from one-point closures of turbulence in the spirit of the K-E models. The exten- 
sion of such models to compressible flows is a matter of current research [16]. 

The nonlinearity of the dissipative scheme may lead to spurious energy spectra 
when using too small a value of the hyperviscosity coefficient. In the case of a pure 
Laplacian. energy then piles up in the small scales and the computation blows up 
reasonably rapidly. Here, a sharp increase in the small scales may occur instead of 
an exponential fall-off. Such equilibria should be discarded on general energetic 
principles. 

Finally, let us point out that we did not encounter any special problem of 
numerical stability in simulating the equations with the hyperviscosity described 
here. This is probably related to the fact that the dissipation has the correct proper- 
ties of convexity and positivity. Indeed, the argument of convexity is sufficient [ 13 ] 
to ensure the thermodynamical stability. 

5. CONCLUSION 

We have derived in this paper a method of numerical modeling of high Reynoids 
number flows starting from first principles. This approach leads naturally to 
positive dissipation functionals, thus avoiding the defect of hyperviscosity methods 
currently used in numerical simulations employing spectral (or pseudo-spectral) 
techniques. We have compared these modeled flows directly with actual experimen- 
tal simulations of Navier-Stokes flows performed at the highest resolution available 
on a CRAY 1. This comparison is done in the two-dimensional homogeneous case 
for a perfect gas. We show that the essential features of the flow are preserved. In 
the large scale, we reproduce the temporal evolution of several variables, such as 
the r.m.s. Mach number or the mechanical energy at a cost roughly two orders of 
magnitude below that of the numerical experiment. At intermediate scales, we also 
obtain the production of vorticity pairs behind the collision of strong shocks, but 
the intensity of the vortices is strongly reduced from the values that occur in the 
original calculation because of scaling effects. 

We are now in the process of applying the hyperviscosity method described here 
to several problems. In particular, we plan to investigate the temporal variation of 
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the fluctuating Mach number with time at high Reynolds number for three-dimen- 
sional flows. We are also looking at the characteristic scale of shocks that emerges 
when varying the spatial scale of the initial conditions. 

When dealing with the problem of star formation in a molecular cloud, seif- 
gravity must be added to the fluid equations. The condensations that occur lead to 
cavitation which is difficult to handle numerically, since schemes do not in general 
preserve the positivity of the density. In that case, in addition to hyperviscosity to 
enhance the Reynolds number. one may add a mass diffusion term in the continuity 
equation that smooths out steep density gradients. 

Finally, we would like to point out that nothing in principle impedes the usage of 
powers of the derivative fields higher than those tested here. However, with an 
explicit temporal numerical scheme, this would prove hard to handle and we have 
made no attempt to do so. 

APPENDIX 

We give here a brief description of the numerical method used in this paper. Our 
codes are pseudo-spectral, with space derivatives computed in spectral space and 
non-linear products in configuration space. The exchange between the two spaces is 
performed through a fast Fourier transform algorithm, written in machine language 
for the CRAY 1 by C. Temperton, in order to accelerate computations. The tem- 
poral scheme is second-order Adams-Bashforth. Having in mind the simulation of 
homogeneous flows at high Reynolds numbers, we choose periodic boundary con- 
ditions and write all variable fields as a Fourier series truncated at wavenumber 
Nrmx . 

To adapt the code to the CRAY IS of the CCVR which has a relatively small 
memory and yet is a fast machine, we chose to minimize the number or arrays 
stored at the cost of extra FFT. At present, the code takes 14 N,,, x N,,, arrays of 
storage and requires the computation of 19 FFT for the two-dimensional fluid 
equations (2.1) written for a perfect ga s in a conservative way. The maximum 
resolution we use is N,,, = 2.56, which takes 1.2 Mword of memory. This is 
achieved by transferring data to and from the central core and the peripheral 
memory: a time step at that resolution takes 0.6 s of CPU on the CRAY 1s and a 
typical run takes on the order of 3 h. 

The choice of N,,,, in turn determines the Reynolds number that will be achieved 
in the simulation. It is adjusted in a dichotomous way, having to fulfil at least two 
conditions: the inertial range in which nonlinear mode coupling prevails be as wide 
as possible, but on the other hand, the energy spectrum in the large wavenumber 
range falls off sufficiently rapidly (no energy accumulation in the dissipative range). 
The limitation on the Reynolds numbers reasonably achieved on present-day 
computers for three-dimensional complex problems (such as those occurring in 
weather prediction for example) is drastic and the cost prohibitive, hence the search 
for adequate models of the small-scale flows. 
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